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SUMMARY

A cell-vertex hybrid �nite volume=element method is investigated that is implemented on triangles and
applied to the numerical solution of Oldroyd model �uids in contraction �ows. Particular attention
is paid to establishing high-order accuracy, whilst retaining favourable stability properties. Elevated
levels of elasticity are sought. The main impact of this study reveals that switching from quadratic
to linear �nite volume stress representation with discontinuous stress gradients, and incorporating local
reduced quadrature at the re-entrant corner, provide enhance stability properties. Solution smoothness
is achieved by adopting the non-conservative �ux form with area integration, by appealing to quadratic
recovered velocity-gradients, and through consistency considerations in the treatment of the time term
in the constitutive equation. In this manner, high-order accuracy is maintained, stability is ensured, and
the �ner features of the �ow are con�rmed via mesh re�nement. Lip vortices are observed for We¿1,
and a trailing-edge vortex is also apparent. Loss of evolution and solution asymptotic behaviour towards
the re-entrant corner are also discussed. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study considers the accuracy and stability properties of a new hybrid �nite volume=ele-
ment scheme in its application to the numerical solution of viscoelastic contraction �ows.
Previously, a second-order scheme has been constructed that demonstrates its e�ciency over
�nite element counterparts on model problems. The current direction of investigation fo-
cuses on highly elastic solutions, with retention of accuracy and favourable stability proper-
ties. Holding this goal in mind, this article presents results for the benchmark problem of
�ow through a 4:1 planar contraction with sharp re-entrant corners for an Oldroyd-B model.
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A comprehensive literature review on this problem may be found in Matallah et al. [1] with
further detail in Matallah [2], White et al. [3], Baaijens [4] and Walters and Webster [5].
Typically, incompressible viscoelastic �ows may be classi�ed through mixed parabolic-

hyperbolic di�erential systems. The central ethos of the current approach is to apply �nite
element (fe) technology to the self-adjoint sections of the system (optimal), and �nite volume
(fv) schemes to the hyperbolic parts. Finite volume technology has advanced considerably,
over the last decade, in its treatment of pure advection equations, and has matured su�ciently
to attack the viscoelastic regime. In this regard, we may cite the important contributions of
Morton and co-workers [6, 7], Struijs et al. [8] and Tomaich and Roe [9], that have advocated
cell-vertex fv formulations for advection, Euler and compressible Navier–Stokes equations. For
cell-centred counterparts, see Berzins and Ware [10]. Generally, cell-vertex formulations re-
quire considerably less degrees of freedom than cell-centred forms, depending upon narrower
stencils. In the viscoelastic context, the emergence of non-trivial source terms, via the consti-
tutive equations, gives rise to some open questions for �nite volume representations. In fact,
in shear �ow or in the vicinity of no-slip boundaries, �ux terms vanish and source terms
dominate. Such stress source terms display dependence on stress and velocity gradients, and
their treatment is addressed comprehensively in this study.
Features of the current hybrid approach include a time-stepping procedure that combines a

�nite element discretization (semi-implicit Taylor–Galerkin=pressure-correction) for continuity
and momentum equations, and a cell-vertex �nite volume scheme for the constitutive equa-
tion. The combination is posed as a fractional-staged formulation based upon each time-step.
The positioning of �nite volume nodal values and control volumes, is such that four linear
�nite volume triangular cells are formed as embedded sub-cells of each parent quadratic �-
nite element triangular cell (note association with superconvergence points, see recovery in
Matallah et al. [1]). Sub-cell reference has arisen earlier in the fe literature, see for example,
the SU method implementation of Marchal and Crochet [11]. Here, this is accomplished by
connecting the mid-side nodes of the parent �nite element triangular cell. An important aspect
is that with stress variables located at the vertices of the �nite volume cells, no interpolation
is required to recover the �nite element nodal stress values. The cell-vertex approach is nat-
urally associated with �uctuation distribution, an upwinding technique that distributes control
volume contributions for each equation to provide nodal solution updates. The consideration
of triangular cells o�ers the �exibility of either structured or unstructured meshing as equally
viable options, without further complication.
The literature on fv implementations for viscoelastic �ow divides into two camps: those

dealing with a full system through fv and hybrid versions, see Reference [12] for review. Most
consider established standard low-order discretization, with cell-centred or staggered grid sys-
tems, and SIMPLER-type algorithms for steady-state solutions on structured rectangular grids.
Essentially, this implies piecewise constant interpolation. There, principal attention has been
directed towards highly elastic solutions, often to the detriment of establishing accuracy in
this complicated scenario. Two recent papers adopting this approach for the abrupt 4:1 pla-
nar contraction �ow are those of Phillips and Williams [13] and Alves et al. [14]. Phillips
and Williams used a semi-Lagrangian method to simulate the �ow of an Oldroyd-B �uid,
with and without the inclusion of inertia. This is a �rst-order implementation that applies a
semi-Lagrangian treatment for convection terms and uses a staggered grid, that avoids the cal-
culation of normal stresses at the re-entrant corner. Only the shear stress variable is located at
the corner singularity, though an averaging procedure is invoked, replacing the corner value by
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shear stress values at cross-stream and upstream neighbouring nodes. These authors assessed
accuracy by demonstrating that the size of the salient-corner vortex remained fairly constant
with mesh re�nement, and concurred with Matallah et al. [1] and Sato and Richardson [15],
both for creeping �ow and with inertia (Re=1). Phillips and Williams commented upon
the absence of lip–vortex activity for coarse meshes, and on their �nest mesh, its appearance
around We=2 with growth as the level of �uid elasticity increases up to a maximum value of
We=2:5. In contrast, Alves et al. considered the same �ow for an upper-convected Maxwell
(UCM) �uid, comparing both �rst-order and second-order schemes, again using staggered grid
systems. However, unlike with the study of Phillips and Williams, none of the stress compo-
nents are located at the re-entrant corner. A �rst-order implementation was able to converge
up to We=8 on a re�ned mesh (third in a series of four, consecutively re�ned meshes),
but proved inaccurate, re�ecting large spurious vortex structure. An alternative second-order
scheme failed to converge at Weissenberg numbers above unity on the same re�ned mesh.
Alves et al. related this premature breakdown of numerical convergence (inhibiting advance
in We) to oscillations in the stress �eld, associated with the use of high-order upwinding in
regions of high stress gradients. Therefore, these authors invoked, in conjunction with their
second-order scheme, a limiting (min-mod) procedure applied to the stress convection (see
also, Sato and Richardson [15]). In this manner, Alves et al. were able to reach a Weissenberg
number of �ve on their third �nest mesh, and three on their fourth, most �ne mesh. Relevant
issues that arise in Reference [14] can be summarized as follows: diminishing lip-vortex with
mesh re�nement as reported by Matallah et al. [1], and Xue et al. [16]; lip-vortex growth
(see References [1, 13] to a lesser extent), and diminishing salient-corner vortex with increas-
ing elasticity; agreement with the asymptotic behaviour of velocities and stresses near the
re-entrant corner, as predicted theoretically by Hinch [17] for an Oldroyd-B �uid (see also,
Renardy [18, 19] for an UCM �uid). The present article develops these themes somewhat
further.
The methodology proposed behind the present cell-vertex �nite volume scheme is novel in

this domain and addresses both accuracy and stability behaviour, along with calculating stress
�elds in the presence of a singularity. Consistent treatment for stress �ux and source terms
is maintained, reminiscent of fe Petrov–Galerkin variational weighting (supg). Likewise, such
considerations may be extended to embrace the transient terms involved. The hybrid scheme
of Sato and Richardson [15] deserves some mention, bearing resemblance to the present. In
contrast, this scheme employed a time-explicit fe method for momentum and time-implicit
fv for pressure and stress of cell-centred type. Higher-order upwinding was achieved through
application of a TVD �ux-corrected transport scheme to the advection terms of the stress
equation. Clearly, some attempt must be made to address the complications of �ux-source in-
teraction, and to accommodate for highly elastic convection, when this arises. In this respect,
the direction adopted by Tanner, Phan-Thien and co-workers [20, 21] was to incorporate a
stabilizing arti�cial stress di�usion, reminiscent of the SU method of Marchal and Crochet
[11]. The fe studies of Baaijens [22, 23] consider various alternative Galerkin least-squares
stabilization procedures, including strain-rate stabilization. The discontinuous Galerkin aspects
involved, strive for low-order stress interpolation and gain stability accordingly. There, the
correspondence to fv weighting and the localized treatment of solution has similar characteris-
tics to the present approach. Under such discontinuous stress representation on a global scale,
we also note the work of Fortin and Fortin [24] with discontinuous quadratic interpolation
and Basombr�io et al. [25] with discontinuous linear interpolation.
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Fluctuation splitting schemes, natural to the cell-vertex treatment, may be of linear or non-
linear type, and introduce such properties as positivity and linearity preservation. To date,
various forms have been considered and their properties analysed [12], recognizing the im-
portance of linearity preservation to achieve high-order accuracy. Our prior studies established
accuracy properties against analytical solutions for smooth �ows [12], before addressing sta-
bility issues for complex smooth and non-smooth �ows [26]. Here, we extend and revise our
methodology with complex �ows and accuracy in mind.
We identify the relative strengths and weaknesses of various strategies for dealing with �ux

and source terms. For the stress nodal update, we consider a �uctuation distribution contri-
bution over the fv-triangle, and a uniform distribution over the median dual cell. The latter
is a unique non-overlapping region associated with each �nite volume node, a new concept
arising with cell-vertex schemes. Other issues covered concern, the use of conservative=non-
conservative stress �ux treatment (area or line integrals), the choice of stress representation,
the order and continuity of stress gradient and velocity gradient representations, the treat-
ment of the re-entrant corner solution, and time consistency. The corresponding properties
of the schemes considered are adjudged, identifying solution behaviour (particularly in stress
pro�les), as a consequence of scheme implementation.

2. GOVERNING EQUATIONS

Incompressible viscoelastic �ows are governed by conservation laws for mass and momentum
and a constitutive equation for stress. In non-dimensional form, the balance equations for
isothermal �ows read

∇ · u = 0 (1)

Re
@u
@t
= −Re u · ∇u −∇p+∇ ·

(
2
�s
�
d + �

)
(2)

and the constitutive equation for an Oldroyd-B �uid may be expressed as

We
@�
@t
=−We u · ∇� − �+ 2�e

�
d +We(L · �+ � · LT) (3)

where u, p, � represent the �uid velocity, the hydrodynamic pressure and the extra-stress
tensor. The total viscosity � is split into Newtonian (�s) and polymeric (�e) contributions,
such that �=�s + �e; d =(L + LT)=2 represents the Euler rate-of-deformation tensor and
LT =∇u, the velocity gradient.
The Reynolds and Weissenberg numbers are de�ned according to convention as

Re=
�UL
�
; We=

�U
L

(4)

where �, � are the �uid density and relaxation time and U , L are characteristic velocity
(average at outlet) and length scale (channel exit half-width) of the �ow. Creeping �ow
is assumed throughout and, as such, the momentum convection terms are discarded, whilst
transient terms are retained to provide the time-stepping facility, see Carew et al. [27].
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3. PROBLEM SPECIFICATION

The benchmark problem of �ow through an abrupt 4:1 planar contraction with a re-entrant
corner for an Oldroyd-B �uid is known to be a formidable test problem, in terms of stability
at high Weissenberg number. It is equipped with an analytical representation for the corner
solution and is well-documented in the literature. Therefore, it is a natural choice in this
numerical study. In a subsequent article [28], we go further to address more robust and
physically representative constitutive models, and complex smooth �ows such as contraction
�ow with a rounded corner.
Figure 1 displays the set of structured triangular meshes employed, showing zoomed sections

around the re-entrant corner, following hierarchical re�nement based on zonal mesh density
in the contraction region. M1, M2 and M3 have been successfully utilized earlier by Matallah
et al. [1] to demonstrate solution convergence with mesh re�nement for the fe=supg scheme.
This o�ers a convenient reference point to qualify the various fv strategies. Here, we re�ne
further generating the hybrid NM3 mesh. In contrast to M3, NM3 mesh displays increased
re�nement in the salient-corner region, but also has one quarter of the element size in the
immediate corner vicinity and one-half just beyond. This choice allows us to discern vortex
activity more clearly in this critical region. Table II displays the mesh characteristics. As

M1 M2

M3 NM3

Figure 1. Set of meshes: zoomed section around re-entrant corner.
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Table I. Table of schemes; for u, ∇u, �, and ∇�: 2, 1, and 0 quadratic, linear and constant rep-
resentation, respectively; Rec. (recovered) and Mul. (multi-valued options); � (line) and � (area)

integral; C.R.I. (Corner reduced integration).

Scheme u ∇u � ∇� ∫
RT CT C.R.I. Wecrit – M2

FV0 2 1 Rec. 2 1 Rec. � CT0 × 1.1
FV1 2 1 Rec. 1 0 Rec. � CT0 × 1.6
FV1.1 2 1 Rec. 1 0 Rec. � CT1 × 1.7
FV1.2 2 1 Rec. 1 0 Rec: � CT2 × 2.0
FV2 2 1 Rec. 2 1 Rec. � CT2 × 0.3
FV2.1 2 1 Rec. 1 0 Rec. � CT2 × 0.8
FV3 2 1 Rec. 1 0 Mul: � CT2 × 3.0
FV4 2 2 Rec. 1 0 Mul. � CT2 × 2.4
FV4.1 2 2 Rec: 1 0 Mul. � CT2

√
3.7

before, the inlet and outlet lengths are 27:5L and 49L to ensure fully developed �ows in these
regions, L being the half-width of the downstream channel.
By convention, we apply no-slip boundary conditions at the wall and enforce symmetry at

the centerline. Velocity is imposed at the inlet and exit through Waters and King transient
boundary conditions [29]. These are analytical transient conditions for the Oldroyd model,
representing a one-dimensional local solution. The pressure is held �xed at a single exit
point to remove the indeterminacy of pressure level. We have appealed to a point-wise time-
dependent initial-value solution for inlet stresses, obtained by imposing vanishing stress �ux
and kinematics as above. In this manner, we have reduced the CPU time consumption by
25%, without degradation in the steady-state solution. The non-dimensional parameters are
�e=�=8=9, �s=�=1=9 and Re=0 (creeping �ow). Typical time steps are 0(10−3) and �ve
Jacobi iterations are employed for the fe stages. The time-stepping termination criteria is taken
as 10−5, a relative solution temporal increment within a least squares measure [1, 12]. To
investigate the stability behaviour of the various scheme alternatives summarized in Table I,
we commence each simulation at We=0:1 from a quiescent initial state in all �eld variables
and increment the Weissenberg number by 0.1, till the scheme fails to converge (encountering
either temporal oscillations or numerical divergence).

4. BACKGROUND TO METHODOLOGY

4.1. Numerical framework

We recall brie�y the algorithmic structure upon which both the fe and hybrid fe=fv are
articulated. The reader is referred to Matallah et al. [1] and Wapperom and Webster [12] for
detailed discussion on these methodologies.
One may commence with the structure of the fe scheme, and point to the hybrid fe=fv

options in contrast. The general scheme follows a time-splitting semi-implicit formulation.
There are two distinct aspects to this approach: a Taylor–Galerkin scheme and a pressure-
correction scheme. The Taylor–Galerkin scheme is a two-step Lax–Wendro� time stepping
procedure, extracted via a Taylor series expansion in time [30, 31]. The pressure-correction
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method accommodates the incompressibility constraint to ensure second-order accuracy in time
(see References [32, 33]). This leads to a three-stage structure for each time step that can be
stated in discrete form as follows [26]:

Stage 1a.

2
�t
Au(Un+1=2 −Un) = bu(Pn;Un;Tn;Dn)

2We
�t

A�(Tn+1=2 −Tn) = b�(Un;Tn;Dn)

Stage 1b.

1
�t
Au(U∗ −Un) = bu(Pn;Un;Un+1=2;Tn+1=2;Dn+1=2)

We
�t
A�(Tn+1 −Tn) = b�(Un+1=2;Tn+1=2;Dn+1=2) (5)

Stage 2.
�t
2
A2(Pn+1 −Pn) = b2(U∗)

Stage 3.
2
�t
A3(Un+1 −U∗) = b3(Pn;Pn+1)

where the superscript n denotes the time level, �t the time step and U;U∗;P;T;D the
nodal values of velocity, non-solenoidal velocity, pressure, extra-stress and velocity gradient,
respectively. Au; A2; A3 are the standard velocity, sti�ness and mass matrices. The precise
form of A� depends on the implementation (fe or hybrid fe=fv), as discussed in the following
sections.
The momentum equation in Stage 1, the pressure-correction in Stage 2 and the incompress-

ibility constraint in Stage 3 are discretised spatially via a Galerkin �nite element method. For
reasons of accuracy, the resulting Galerkin Mass matrix-vector equations at Stages 1 and 3
are solved using an e�cient element-by-element Jacobi scheme, requiring only a handful of
iterations. A direct Choleski decomposition procedure is invoked to handle Stage 2. Finally,
the di�usive terms in Equation (2) are treated in a semi-implicit manner in order to enhance
stability.
The parent fe mesh element is a triangular cell with three vertices and three mid-side nodes.

To solve for the momentum and continuity equations, the velocity is represented by quadratic
shape functions, using the six nodal values, and the pressure by linear functions from the
vertices alone, see Figure 2(a). All the above features are common to both fe and hybrid
fe=fv implementations. The fe and fv representations depart in their spatial discretization of
the stress constitutive equation (see on). The fv sub-cell is an internal triangle of each fe
triangle, built on the mid-side node connections. Representation of stress upon each sub-cell
may be taken in a variety of ways, including linear on the sub-cells or quadratic from the
parent fe cell. These are crucial aspects expanded upon below.
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fe triangular element
fv triangular sub-cells
fe vertex nodes (p, u,   � )
fe midside nodes (u,   � )
fv vertex nodes (  � )

(a)

i

j

k

0
a

� 1
�  2

(b) (c)

T1

T2

T3

T4

T5

T6

l

Figure 2. Hybrid �nite element=�nite volume spatial discretization: (a) Schematic diagram: fe-cell
with four fv sub-cells; (b) LDB-scheme, de�ning �1 and �2 in fv cell; (c) Control volume about

node l,with median dual cell (MDC).

4.2. Finite element method

In this instance with fe discretization of stress, quadratic interpolation functions are used for
both velocity and stress, and the matrix A� is sparse. Therefore the resulting equation is similar
in structure to that of the momentum equation and is solved accordingly. Other features are the
incorporation of supg weighting and recovery of velocity gradients (as coe�cients of the con-
stitutive equation) that are found necessary to enhance stability of convergence [1, 26]. Here,
recovery of velocity gradients implies gathering continuous representations, that themselves
depend upon superconvergent recovered nodal values for these quantities. This implementation
(fe=supg) has proved successful in reaching high We-solutions for the present 4:1 contraction
�ow and compares favourably with the extensive literature available on the subject, see Matal-
lah et al. [1] for review and discussion thereon. Nevertheless, the fe implementation su�ers a
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heavy computational overhead when compared to its hybrid fe=fv counterpart, as reported in
our previous communications [12, 26]. We demonstrate below the superior properties of our
optimized hybrid fe=fv scheme above fe=supg, re accuracy and stability on �ner meshes.

4.3. Hybrid �nite volume method

For clarity of the expos�e, we summarize the key features of our base hybrid fe=fv method,
which has been extensively documented in the precursor papers of Wapperom and Webster
[12, 26]. In this implementation, the matrix A� is the identity matrix, the need to resolve
a matrix-vector equation is avoided, and the right-hand side vector bu is straightforward to
construct. These two features have led to a hybrid fe=fv implementation that is up to �ve
times more e�cient than fe=supg for viscoelastic �ow past a cylinder and the abrupt 4:1
contraction problem.
Cell-vertex �uctuation distribution (FD) schemes, which are the foundation of the present fv

implementation, require only the vertices of a triangular cell to evaluate the solution of a given
scalar �eld. The theory associated with the variants of such FD-schemes is centred around
appropriate discretisation choices for pure advection equations. They feature such properties
as:

• Conservation: that requires the distribution coe�cients �Tl to sum to unity for each
triangle T, the summation running over its three vertices l.

• Linearity preservation: that is associated with second-order accuracy at steady state.
• Positivity: that is related to accuracy in the transient development, prohibiting the oc-
currence of new extrema in the solution. Particular attention must be paid to the issue
of dealing with sources, as these may lead to physical extrema, that should not be sup-
pressed arti�cially by imposing positivity.

Furthermore, FD schemes can be divided into linear and non-linear classes. Non-linear
schemes may be both linearity preserving and positive; alternatively, linear schemes can only
possess one such property. Since we are interested in viscoelastic �ows where sources can
be dominant, from our previous experience we have selected the low di�usion B (LDB)
scheme. This is a linear scheme with linearity preserving properties, that has proven e�cient
in dealing with model problems, as well as some complex �ows [12, 26]. The LDB distribution
coe�cients �i are de�ned per cell node i according to the angles �1 and �2 in the fv triangle,
subtended on both sides of the cell advection velocity a (an average vector per cell, see
Figure 2(b)). The LDB coe�cients are de�ned as

�i = (sin �1 cos �2)= sin(�1 + �2)
�j = (sin �2 cos �1)= sin(�1 + �2)
�k =0

(6)

We point out that the closer the advection velocity a is to being parallel to one of the
cell boundaries, the larger the contribution to the downstream node at that boundary, hence
minimizing the introduction of spurious numerical di�usion.
To avoid interpolation when recovering the stress nodal values for the momentum equation,

the �nite volume tessellation is constructed from the �nite element grid by connecting the
mid-side nodes. This generates four triangular fv sub-cells per fe parent triangle, as indicated
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in Figure 2(a). Accordingly, the stresses are computed on the vertices of the fv cells as
outlined below.
First, we recast the stress constitutive equation (3) in conservative form,

@�
@t
=−∇ ·R+Q (7)

R= u� (8)

Q =
1
We

(
2
�e
�
d − �

)
+ L · �+ � · LT (9)

where R and Q are the �ux and the source terms, respectively.
Next, we consider each scalar stress components, �, acting on an arbitrary volume �. Its

variation is controlled through the �uctuations of the �ux vector R= u� and the scalar source
term Q

@
@t

∫
�l

� d�=
∮
�
R · n d� +

∫
�l

Q d� (10)

The core of this cell-vertex �uctuation distribution scheme is to evaluate these two variations
on each fv triangle, and to distribute them to the three vertices of the cell according to the
preferred strategy. The update of a given node l is obtained by summing the contributions
from its control volume, �l, that is composed of all the fv triangles surrounding node l, see
Figure 2(c).
When source terms are involved, the standard treatment advocated widely in the literature

consists in dealing separately with the �ux and the source terms, say in the form

�̂
T
l
�n+1l − �nl
�t

= �Tl RT +Q
l
MDCT (11)

for a particular triangle T. �̂
T
l is the area of the median dual cell (MDCT) associated with

node l within the triangle T (Figure 2(c)) and the subscripts T and MDCT indicate the control
volume over which the �ux and the source terms are integrated. However, this method has
proved itself to be highly inaccurate, even for model viscoelastic problems with non-trivial
source terms. This is due to the incompatibility of control volumes between the two contribu-
tions and their alternative discretizations [34]. For extensional �ows (convection-problems),
Wapperom and Webster [12] developed an alternative scheme that consistently distributes both
�ux and source terms over the fv triangle,

�̂
T
l
�n+1l − �nl
�t

= �Tl (RT +QT) (12)

Note, by design, the LDB scheme does not impose positivity upon the source terms. To
evaluate the integrals RT and QT, the velocity and stress were approximated as piecewise
linear from the vertices of the fv triangle and the velocity gradients are recovered from
the parent fe velocity �eld (hence, are linear and continuous across the fv sub-cells). This
approach, denoted FVL in Reference [12], achieved second-order accuracy at steady state for
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sink and Cartesian model problem �ows. However, it was necessary to have recourse to the
quadratic representation from the parent fe for the velocity and stress (FVQ form of Reference
[12]), to maintain second-order accuracy when the �ow was nearly parallel to the boundaries
(as would arise near no-slip boundaries).
Switching attention from these extensional model problems to pure shear and mixed shear=

extensional �ows, required two additional strategies to retain stability; consistent streamline-
wise upwinding and area integral ‘median dual cell’ contributions. Hence, Wapperom and
Webster proposed the following generalised distribution scheme [26]:

�̂
T
l
�n+1l − �nl
�t

= �T�Tl (RT +QT) + �MDC(R
l
MDCT +Q

l
MDCT) (13)

The parameters �T and �MDC are used to discriminate between various update strategies. With
�T =f(We; a; h) and �MDC =1, the nodal update is similar to consistent streamline upwinding
as used in �nite elements. The function f is such that f= �=3 if |�|63 and 1 otherwise, where
�=We(a=h), with a the magnitude of the advection velocity per fv-cell and h the square-
root of the area of the fv-cell in question. In this manner, Wapperom and Webster [26]
generated solutions for a Wecrit of 1.5 for smooth �ow past a cylinder and 1.3 for the abrupt
4:1 contraction problem, without imposing additional stabilization techniques. This situation
was marginally improved upon in the latter instance with momentum strain-rate stabilization,
then reaching a critical Weissenberg number of 1.5. Accordingly, we retain this method as
the foundation for our present hybrid fe=fv implementation and extended study. The above
deliberations have emphasized the importance of treating the contributions from the �ux and
source terms in a consistent manner. Therefore, we proceed to extend such considerations to
the time terms, following Hubbard and Roe [35] for pure convection problems. Equation (13)
for a single triangle update, is labelled scheme CT0: a form that lacks time consistency, due
to area weighting. The complete nodal update corresponds to the sum of the contributions
from all triangles surrounding the node (see Figure 2(c)), de�ning �̂l as the area of the MDC
associated with node l.
To enforce consistency, the contribution from the triangles (upon which the �uctuation dis-

tribution scheme impinges) and that from the MDC (distributed uniformly) may be weighted
with an appropriate area and then summed to yield the nodal update, viz.

�n+1l − �nl
�t

=
∑

∀T�T�
T
l (RT +QT)

�̂FD
+

∑
∀T(R

l
MDCT +Q

l
MDCT)

�̂l
(14)

Here, we introduce two possible options as consistent schemes, dependent upon the area
sum �̂FD =

∑
∀T �T�

T
l�T, where �T is the area of the triangle T. Both schemes follow Equa-

tion (14), with exception when �̂FD falls below a prede�ned threshold (say 10−14). Under such
circumstances, CT1 reverts to a pure MDC approach (discarding the FD-term); alternatively,
CT2 retains the FD-contribution, by recourse to CT0, so that then �̂FD = �̂l.
The motivation for such options lies in the fact that the area sum, dividing the contributions

from the triangles Equation (14), can vanish near no-slip boundaries, where the average
velocity tends to zero. Indeed, in pure shear �ow regions, the velocity is parallel to the
walls, and it is our experience that, a pure median dual cell approach is a reasonable choice.
Hence, we expect CT1 to be more accurate than CT0 in the shear �ow zones of the 4:1
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contraction problem. However, in the immediate vicinity of the corner, where the �ow is
mainly extensional, one needs to retain the information from the �uctuation distribution term
as well. This is the rationale upon which we have constructed scheme CT2, which is superior
to CT1. Findings suggest that oscillations beyond the corner, arising as a consequence of the
sharp local gradient, are signi�cantly smoothed from scheme CT1 to CT2 (see Reference [36]).
Other issues that in�uence trends in solution quality are: the discretization of the stress

�ux integral (RT) - conservative=non-conservative; the order of the solution representation -
stress linear=quadratic; the order and continuity of gradient approximation; and the quadrature
rules used to evaluate the integrals. The combination of these speci�c options generates the
current fv scheme variants, summarized in Table I for mesh M2. This mesh is su�ciently
coarse to stimulate discrepancies in solution smoothness across scheme versions, prior to mesh
re�nement studies. Calibration is performed against the fe=supg scheme, see Reference [1],
for which Wecrit is 4.1 on mesh M2.
Scheme FV0, with quadratic stress interpolation, reached the modest level of Wecrit of 1.1.

This was disappointing, following the promising performance of FV0 on the smooth �ow
of an Oldroyd-B �uid past a cylinder in an in�nite domain [26]; there, Wecrit reached 1.5,
surpassing that for fe=supg of 1.4. In the 4:1 contraction �ow, FV0 solutions match the fe=supg
counterparts almost exactly in core �ow; FV0 stress, �xx, su�ers from oscillations, along the
downstream wall just beyond the re-entrant corner.
Linear interpolation of all primary variables was successfully utilised in the fe-context by

Basombr�io et al. [25]. With this in mind, we propose the linear stress representation of scheme
FV1, that stimulated an advance in stability response, elevating Wecrit from 1.1 for FV0 to
1.6 with scheme FV1. With FV1, the amplitude of post-corner oscillations is reduced; there,
the undershoot capture is better; the solution is shifted towards, though remains slightly out
of phase with, the fe=supg representation. Time consistency, as above, improved Wecrit levels
to 1.7, for CT1 (FV1.1), and 2.0 for CT2 (FV1.2). The phase lag, common to FV0 and FV1
family schemes, is attributed to the dissipative nature of line-integral stress-�ux approximation
(standard to most fv-schemes).
Non-conservative area integration of RT (with stress-gradient evaluation) leads to schemes

FV2 and above. Scheme FV2.1, with linear stress, is most promising: at We=0:5 it removes
the phase-lag and sharpens the post-corner �xx-pro�le on the downstream wall, above and
beyond both line-integral (FV1.2) and fe=supg alternatives. Additionally, FV2.1 produces the
most accurate fully-developed exit (shear) �ow achieved with a linear stress representation,
both in smoothness and magnitude. Unfortunately, FV2.1 over-estimates the �xx-peak at the
corner, that restricts Wecrit to 0.8. Such retardation is even more excessive with quadratic
stress representation (FV2), to merely 0:3.
To address these large stress peaks (of FV2.1) within the corner neighbourhood, we have

implemented scheme FV3, with a non-recovered, constant stress-gradient, multi-valued from
sub-cell to sub-cell. In Figure 3 at We=0:8, we compare the recovered (FV2.1) and non-
recovered stress gradient versions (FV3). This corresponds to the maximum attainable
We-level for the recovered form. The comparison indicates that the corner FV3 stress-peak
is lowered, by about one half, tallying with the fe=supg solution (Figure 3(a)). With FV2.1,
there are oscillations present, in the less dominant �xy and �yy components, prior to the corner.
These are removed with scheme FV3. Of major signi�cance is the impact on stability: by
imbuing the area integral with multi-valued stress-gradients, Wecrit is raised from 0.8 to 3.0.
We associate this elevation with enhanced accuracy, leading to improved stability properties.
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Figure 3. E�ect of non-recovered stress gradient: linear stress, Area RT, CT2, Corner region; Sin-
gle-valued stress gradient (FV2.1), Multi-valued (FV3), mesh M2. (a) �xx-stress line pro�le y = 3:0,
fe/supg, FV2.1 and FV3; (b) Steady-state negative S, We = 0:8; 11 contours between −1 and 0.

In Figure 3(b), the respective �eld plots of condition number S (see below for de�nition)
reveal that scheme FV3 has repaired the ‘loss of evolution’ apparent with FV2.1.
Nevertheless, post-corner stress-pro�les of FV3, retain some slight discrepancy from the

smoother fe=supg solution. Hence, from a linear recovered (continuous), velocity-gradient
representation in FV3, with scheme FV4 we adopt a quadratic recovered form, mimicking
that employed in the fe=supg implementation [1]. Except for the corner stress peak value itself,
the result is a close match between FV4 and fe=supg pro�les. The downside is a reduction in
Wecrit from 3.0 to 2.4 for the FV4 scheme, attendant with elevation of the peak stress value.
At this juncture, we identify the fv-treatment of the corner-solution itself, as being associated

with lack-lustre levels of attainment of Wecrit. This is manifest through the underestimation of
�yy prior to the corner, falling to negative values as we increase elasticity. The contraction �ow
displays discontinuous corner solutions in stress and velocity-gradient �elds. These we may
incorporate into the fv-approximation through reduced quadrature for �ux and source term
integrals. In scheme FV4.1, we adjust our fv quadrature rule, exact for cubics, to a linear
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Steady-state negative S, We = 2:4; 11 contours between −1 and 0.

form within the control volume surrounding the re-entrant corner. Corner reduced integration
(C.R.I) has the e�ect of sampling the integrand, in such a manner, as to be equivalent to
adopting a lower order representation of this quantity from cell to cell. Figure 4(a) illustrates
how this local treatment brings FV4.1 stress-pro�les (�xx and �yy), into line with those of
the fe=supg scheme. Scheme FV4.1 corrects the underestimated value of �yy at the corner.
This, in turn, has increased Wecrit from 2.4 for scheme FV4, to 3.7 for scheme FV4.1, closely
approximating that for the fe=supg scheme of 4.1 on mesh M2. We note below on the re�ned
mesh NM3, that FV4.1 both surpasses fe=supg in stability and provides superior localised
solution properties within the stress boundary layers. These layers build up conspicuously
along the downstream-wall. The position on condition number S is re�ected in Figure 4(b).
At We of 2.4, FV4.1 over FV4, is shown to halve the minimum negative level of S, along
with the number of nodes infected.
To summarize, an optimal fe=fv hybrid implementation is that of scheme FV4.1. Its at-

tributes are: a linear representation of the stress, based on the fv sub-cell with a non-recovered
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(multi-valued) constant stress-gradient; velocity gradients of recovered quadratic form over the
parent fe; non-conservative area integrals for RT, coupled with multi-valued stress-gradients;
consistent time-term and reduced integration treatment of re-entrant corner solution gradients.
Beyond this point, hybrid combination schemes may also be considered, but await further,
more detailed investigation.

5. MESH REFINEMENT

We proceed to demonstrate that FV4-level schemes not only compare favourably with the
recent literature, but also highlight some fresh features.

5.1. Vortex behaviour

Adopting the format and conventions of Matallah et al. [1], Figure 5 displays the streamlines
on mesh M2 for scheme FV4.1 with increasing Weissenberg number. Mesh M2 is the standard
mesh employed for the scheme development work (see Reference [36]), and is less re�ned
than that to follow. Both fv schemes provide practically identical solution patterns up to
We¡2. A lip-vortex is apparent for We¿1, with signi�cant lip-vortex growth upon increase
of elasticity. For constant viscosity �uids, such behaviour is widely reported in the literature in
the same range of Weissenberg number and at comparable levels of mesh size (see References
[1, 13, 14, 37, 38]). We go on to note that such lip-vortex growth is spurious (see below), at
least up to levels of We=2. From Table I, we observe that Wecrit levels on mesh M2 equate
to 2.4 for scheme FV4 and 3.7 for scheme FV4.1, illustrating the stability enhancement in the

(a) We=1.0 (b) We=2.0

(c) We=3.0 (d) We=3.7

Figure 5. Streamlines with increasing We. Scheme FV4.1; Mesh M2.
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FV4 FV4.1

(a) M1

(b) M2

(c) M3

(d) NM3

Figure 6. Streamlines with mesh re�nement. We = 2:0.

latter result. Similar vortex structure to that of Figure 5(d) was reported by Carew et al. [27],
for a linear PTT model at We=10 and Re=1, with equal-sized lip- and salient-corner vortices.
Mesh re�nement is considered in Figure 6 for the four meshes employed. Streamlines

patterns are displayed at the larger value We=2 for both fv schemes, FV4 and FV4.1. Here,
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Table II. Mesh characteristics.

Degrees of freedom Corner element densities

Meshes Elements Nodes u, p, � Rmin Salient Re-entrant

M1 980 2105 11088 0.024 28 75
M2 1140 2427 12779 0.023 63 85
M3 1542 3279 17264 0.019 135 87
NM3 2987 6220 32717 0.011 201 398

(a) We=1.0 (b) We=2.0

(c) We=2.5 (d) We=2.8

Figure 7. Streamlines with increasing We. Scheme FV4.1; Mesh NM3.

it is apparent that lip-vortices diminish and practically vanish at We=2 upon mesh re�nement
with either fv scheme. This bears out the �ndings of Matallah et al. [1] for Oldroyd-B and
Alves et al. [14] for an UCM �uid. Solutions on the �nest mesh (NM3) display appreciable
improvement in solution smoothness over the coarser meshes. A miniscule lip-vortex prevails
at this level of �uid elasticity (We=2). Both FV4 and FV4.1 schemes broadly represent the
same solution features, and concur on the �nest mesh. A faint trailing-edge vortex is detected
and scheme FV4.1 points to this even on the coarser meshes (Table II).
These continuous trends are con�rmed in Figure 7 with increasing Weissenberg number

on our �nest mesh, NM3. Both level four schemes give practically identical solutions up
to We=2:5, though scheme FV4.1 survives to the larger stability limit of We=2:8. In this
respect, the fe=supg scheme is inferior on �ner meshes, achieving only the modest level of
We=1:5, re�ecting global pollution in the downstream-wall stress boundary layer solution
(see also, Aboubacar et al. [28], for illustration on the rounded-corner counterpart problem).
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Table III. Lip-vortex intensity (−10−3); (D) numerical divergence, (O) temporal oscillations.
We Scheme M1 M2 M3 NM3

1.0 FV4 × × × 0.011
FV4.1 × × × ×

1.5 FV4 0.385 0.577 0.697 0.085
FV4.1 0.145 0.267 0.538 0.020

2.0 FV4 1.066 1.272 1.482 0.126
FV4.1 0.334 0.880 1.053 0.079

2.5 FV4 1.578 (D) (O) 0.177
FV4.1 0.420 1.365 1.773 0.286

2.8 FV4 1.813 (D) (O) (D)
FV4.1 0.372 1.635 (D) 1.192

When the mesh is su�ciently re�ned, these fv schemes indicate the persistence of the
lip-vortex beyond We=2, say with We of O(3) (see Table III). This is so with=without a
discontinuity capturing technique applied at the corner (scheme FV4.1 with; FV4 without):
convincing evidence indeed. One must be guarded on this issue, however, as one cannot
be categorical without still further mesh re�nement. Unfortunately, for the Oldroyd model,
further re�nement to the corner singularity stimulates stronger stability restrictions and these
relatively high levels of elasticity are increasingly more di�cult to access (Figure 8).
The existence of a small trailing-edge vortex is con�rmed on the downstream wall with

rising We, immediately after the re-entrant corner. Such a feature may well have been over-
looked by others, even with very re�ned meshes [13, 14], due to their discretization and
griding choices. Nevertheless there is evidence for this in the literature. In the viscous con-
text, Dennis and Smith [39] showed that with considerable mesh re�nement, a post-corner
trailing-edge vortex was present in the Newtonian case for Reynolds numbers in excess of
150 for �ow in a 2:1 contraction geometry. In the viscoelastic regime and for the present
problem, Baloch et al. [40] hinted at the existence of such a trailing-edge vortex at We=5,
for a pseudo-steady-state solution. They incorporated a local discontinuity capturing technique
into their Taylor–Galerkin fe=supg implementation (see also Carew et al. [41]), following a
Galerkin-least-squares approach.
The intensity of the lip-vortex is provided in Table III. It increases with We on each mesh

and for both level four schemes. Generally, the �nest mesh NM3 provides lowest intensity
levels for each scheme. Correspondingly, the strength of the salient-corner vortex is charted in
Table IVa. The �nest mesh values re�ect a gradual decline with increasing We. These trends
are in close agreement with those observed by Matallah et al. [1], and Alves et al. [14].
The salient-corner vortex cell size, (X ) (Table IVb), has been reported widely in the litera-

ture to remain fairly constant (at around 1.4) with increasing elasticity [1, 11, 13, 15, 37]. The
quantity (X ), is de�ned as the length between the salient-corner and the intersecting point
of the vortex separation line on the upstream wall. We con�rm the constancy of X on the
coarser mesh M2 with scheme FV4.1, the identical mesh used to produce the fe=supg results
of Matallah et al. [1]. In fact, all consistent methods agree with these �ndings on coarser
meshing, as illustrated in Figure 9(a).
In contrast to the above, results on our �nest mesh NM3 of Table IV reveal that the size

of the salient-corner vortex actually decreases linearly with increasing Weissenberg number.
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x x

(b) We=2.5

Smin = − 0.9957 Smin = −0.9817

(c) We=2.8

Smin = − 0.8458

Figure 8. Condition number S with increasing We, mesh NM3.

Figure 9(b) demonstrates satisfactory agreement between FV4.1 (or FV4) on mesh NM3, and
the min-mod scheme of Alves et al. on their third and fourth �ner meshes, both in trends and
magnitude (see Table IV for relevant data). On mesh NM3 at We=2:8, 18% reduction in X
is observed from the position at We=0:1. Likewise, Alves et al. [14] reported a signi�cant
decrease in salient-corner cell size for an UCM �uid through consistent mesh re�nement
(38%, as We was raised from zero to three).

5.2. Stress patterns

Stress contour lines emphasise solution convergence with mesh re�nement in the three compo-
nent stress �elds, as provided in Figure 10 at We=2. This con�rms scheme FV4.1
convergence on the �nest mesh, NM3, showing the contrast to solutions on mesh M2. There
is no discernible di�erence in the patterns in core �ow away from the corner and solutions
on mesh NM3 are smoothed considerably in the corner region. A clear indication is provided
of the build up of boundary layers in �xx and �xy, �nely resolved on mesh NM3. The width
of stress boundary layers for various models and �ows is discussed by Renardy [42], Ha-
gen and Renardy [43], (width of We−1 for Oldroyd-B and this �ow). The stress �elds of
Figure 10 are in close correspondence with those of Phillips et al. [13]. On our �nest mesh
NM3 at We=2, and with corner treatment introduced into scheme FV4 producing scheme
FV4.1, almost identical patterns are observed in all stress components for both schemes. Only
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Table IV. (D) numerical divergence, (O) temporal oscillations.

We Scheme M1 M2 M3 NM3

(a) Salient corner vortex intensity (−10−3)

0.1 FV4 0.605 0.962 0.989 0.860
FV4.1 0.603 0.960 0.987 0.860

1.0 FV4 0.665 0.956 0.944 0.816
FV4.1 0.643 0.918 0.913 0.811

1.5 FV4 0.687 0.897 0.924 0.647
FV4.1 0.614 0.807 0.850 0.645

2.0 FV4 0.706 0.867 0.921 0.447
FV4.1 0.573 0.677 0.767 0.489

2.5 FV4 0.978 (D) (O) 0.368
FV4.1 0.557 0.622 0.801 0.377

2.8 FV4 1.256 (D) (O) (D)
FV4.1 0.581 0.610 (D) 0.350

(b) Salient corner vortex cell-size, X , across mesh with increasing We, FV4 and FV4.1

0.1 FV4 1.500 1.400 1.600 1.412
FV4.1 1.500 1.400 1.600 1.412

1.0 FV4 1.500 1.400 1.600 1.358
FV4.1 1.500 1.400 1.600 1.358

2.0 FV4 1.500 1.400 1.500 1.203
FV4.1 1.500 1.400 1.500 1.203

2.8 FV4 1.500 (D) (O) (D)
FV4.1 1.500 1.400 (D) 1.154

minor modi�cation in the corner region is apparent with FV4.1. This demonstrates how the
local treatment of the re-entrant corner solution is crucial in guaranteeing stability on coarser
meshes. It is also essential for accuracy, if �ner �ow features are to be captured on more
re�ned meshes.

5.3. Loss of evolution

The ability of a numerical scheme to retain the evolutionary character of the underlying
equation system may be used as a stability indicator for that particular scheme
[11, 13, 25, 27, 44, 45]. Dupret and Marchal [46] proposed a criterion to indicate loss of evo-
lution for a Maxwell �uid, via the condition number S,

S=2
s1 ∗ s2
s12 + s22

(15)

where s1 and s2, accordingly, are the non-trivial eigenvalues of the tensor TA= �+ (�e=We)I .
With frozen initial and boundary conditions applied, S should remain positive throughout the
�ow domain to avoid the loss of evolution. Connected regions of such behaviour would be
particularly disastrous, that would consequently lead to numerical divergence. Strictly speaking,
the theory applies to the strong solution of a Maxwell model in inertial �ows. Therefore, in
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Figure 9. Size of salient corner vortex with increasing We; Scheme
FV4.1. (a) Mesh M2; (b) mesh NM3.

the case of the Oldroyd model, the condition number S is only an indicator of failure in
scheme evolution, relying upon similar discrete structure.
It is instructive to investigate the relationship between the behaviour of factor S and the

appearance of lip and trailing-edge vortices. In Figure 8, we report the condition number on
our �nest mesh NM3, for schemes FV4 and FV4.1, with increasing We. We comment that for
We¡1, there is a complete lack of negative values of S. At We=1, there is a single negative
value located at the corner. For higher We, isolated sporadic points occur that are restricted
to the downstream wall, just beyond the corner. This is strong indication that the appearance
of the lip-vortex (We¿1, see Figure 7) may trigger the local loss of evolution at isolated
points (negative S). The question arises, as to whether it is this resultant loss of evolution that
gives rise to the trailing-edge vortex. On the coarser mesh M2 and at We=2, scheme FV4
exhibits a signi�cant lip-vortex without a trailing-edge vortex, while scheme FV4.1 displays
both (Figure 6(b)). Nevertheless, �eld plots for S factor indicate similar polluted zones (only
at the lip-vortex) for both schemes. Hence, this alone cannot account for the onset of the
trailing-edge vortex.
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Figure 10. Stress contour lines, We = 2:0, FV4.1. (a) �xx; (b) �xy; (c) �yy.
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5.4. Asymptotic behaviour

The singular asymptotic behaviour of the stress at a re-entrant corner has been studied the-
oretically by a number of researchers, using an (r,	) polar coordinate system of reference,
centred at the corner [17–19, 47]. For the �ow of an Oldroyd-B �uid past a sharp corner and
for a given angle 	, Hinch [17] established that velocity components asymptote towards the
corner like r5=9. In a similar fashion, stress components are singular as r−2=3. Hinch assumed
the absence of lip-vortices, so that the �ow is viscometric near the walls, away from the
corner. Renardy [19] subsequently con�rmed the �ndings of Hinch, providing the angle 	 is
not too small; Renardy [19] also noted that the Hinch formulation violates the momentum
equation near the walls.
In this article, we consider two such angles as the solution approaches the corner: 	=
=2

and 	=
. In this respect, we may restrict ourselves to results for scheme FV4.1, as charac-
teristic of level four schemes. All results illustrate mesh convergence and are plotted for the
four meshes at We=1: so prior to lip-vortex onset. At the cross-stream angle (	=
=2), Ur
re�ects the anticipated theoretical decay, as does �rr and �r	 (Figures 11(a) and 11(b)). U	
and �		 deviate marginally from the predicted slopes, see Figure 11(c) for stress. Similar con-
clusions were reported by Alves et al. [14] for the �ow of an UCM �uid. We have observed
satisfactory agreement with the theory in all solution components in the upstream direction,
(	=
, see Figures 11(d)–(f)). Such agreement is strong con�rmation of the high-order of
accuracy of present solutions.

6. CONCLUSIONS

We have fashioned a stable and accurate implementation of a novel cell-vertex hybrid �nite
volume=element scheme, for abrupt planar contraction �ow of an Oldroyd-B �uid. This hybrid
fe=fv procedure surpasses fe=supg, in stability at high We on the more re�ned meshes, and
provides superior representation of stress boundary layers.
A systematic study is conducted for stress behaviour, along a line intersecting the down-

stream wall. Post-corner oscillations, commonly observed when stresses are calculated at re-
entrant corners, are alleviated. This has been achieved via a non-conservative form of the
�ux, along with a consistent treatment of the transient stress update, and a recovery technique
for velocity gradients. Linear stress representation, with non-recovered stress gradients, proved
crucial to enhance stability. In addition, we have highlighted the importance of incorporating
a local discontinuity capturing technique for the re-entrant corner solution, achieved here via
reduced quadrature.
Accuracy has been established in a number of ways: �rst, we have demonstrated conver-

gence with mesh re�nement of salient-corner vortex size and stress �elds; second, we have
found close agreement with theoretical predictions, in asymptotic behaviour of velocity and
stress, approaching the re-entrant corner. Finally, we have shown that our results concur with
the literature for the size of the salient-corner vortex. We con�rm the existence of a lip-vortex
for this problem (for We¿1), that grows in size and intensity with increase of We. Alterna-
tively, the salient-corner vortex decreases in size and strength with increasing We, for such a
constant viscosity model. Additionally, we have encountered the existence of a trailing-edge
vortex, accompanying the on-set of a lip-vortex. It is clear that the appearance of negative
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Figure 11. Stress asymptotic behaviour approaching re-entrant corner, along directions 	=
=2
(cross-stream) and 	 = 
 (upstream), FV4.1, We = 1:0.

values in the condition number S correlates with the presence of a lip-vortex. There is no evi-
dence to suggest that these highly localised negative S values are associated with trailing-edge
vortex activity.
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Here, the use of the Oldroyd-B model has allowed a measure of scheme performance to
be established in terms of stability. There is no doubt that the presence of a re-entrant corner
has been all-important in providing the sharpness of solution to distinguish the independent
properties of the proposed scheme combinations. In a sequel on contraction �ows [28], we
proceed to consider three important issues. First, we remove uncertainty associated with the
corner singularity and round the corner, to produce smooth �ows, with a complex mix of shear
and extension. Second, we retain the Oldroyd-B model, to assess stability and to make direct
comparison between rounded and abrupt corner �ows. Lastly, we have recourse to Phan–
Thien–Tanner constitutive models (linear and exponential), to consider alternative forms of
material rheology. This introduces shear-thinning and strain-softening=hardening properties.
Accordingly, attainable levels of elasticity are raised, to an order of magnitude beyond that
realised for the Oldroyd-B model. The proposed hybrid fe=fv scheme, armed with its identi-
�ed and attractive properties of e�ciency, accuracy and stability, awaits further validation in
more complex scenarios. In the future, we intend to investigate time-dependent �ows, high-
order �uctuation distribution schemes, free-surface problems, three-dimensional �ows and the
extreme conditions identi�ed in industrial processing.
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